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ABSTRACT
The advent of network functions virtualization (NFV) means that
data planes are no longer simply composed of routers and switches.
Instead they are very complex and involve a variety of sophisti-
cated packet processing elements that reside on the OSes and soft-
ware running on compute servers where network functions (NFs)
are hosted. In this paper, we argue that these new “software data
planes” are susceptible to at least three new classes of performance
problems. To diagnose such problems, we design, implement and
evaluate, PerfSight, a ground-up system that works by extracting
comprehensive low-level information regarding packet processing
and I/O performance of the various elements in the software data
plane. PerfSight then analyzes the information gathered in various
dimensions (e.g., across all VMs on a machine, or all VMs de-
ployed by a tenant). By looking across aggregates, we show that
it becomes possible to detect and diagnose key performance prob-
lems. Experimental results show that our framework can result in
accurate detection of the root causes of key performance problems
in software data planes, and it imposes very little overhead.

Categories and Subject Descriptors
C.2 COMPUTER-COMMUNICATION NETWORKS [C.2.3 Net-
work Operations]: Network management
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1. INTRODUCTION
Data plane diagnosis tools are invaluable toward managing and

troubleshooting networks. Tools such as ping and traceroute, and
frameworks such as NetFlow [4] and sFlow [8], are routinely used
by network operators both to understand whether the network is
functioning as expected, and, if not, understand what may be caus-
ing the underlying problem.

However, in recent years, network data planes have changed
in fundamental ways. In addition to simple L2 and L3 devices,
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they are increasingly composed of a wide range of network func-
tions, or middleboxes, that perform custom packet processing to aid
in satisfying various network-wide objectives pertaining to perfor-
mance, security, and compliance; examples include firewalls, load
balancers, application gateways, accelerators, etc. With the advent
of software switching, and more importantly, network functions
virtualization (NFV), traditional hardware switching elements and
middleboxes are being realized using software running on generic
compute platforms (e.g., a virtual machine, or VM).

Thus, the “data plane” that packets traverse on end-to-end paths
now includes—in addition to hardware L2/L3 devices and links—a
variety of software components that reside within compute servers’
virtualization stacks and within the VMs running various middle-
box software. Examples include physical and virtual NICs and
their drivers, various packet processing routines in hypervisors and
within middlebox logic, virtual switches, hypervisor I/O handlers,
host and guest network stacks, etc. We refer to this new portion of
the data plane as the software data plane.

Our community has developed a variety of innovative tools and
frameworks for diagnosing problems in hardware dataplanes. Ex-
amples include traceroute, path MTU discovery [5], available ca-
pacity detection [34], tomography [13], etc. Unfortunately, we
don’t have similar tools for software data planes.

In fact, software data planes present new challenges to diagno-
sis. Because they span a variety of software components running
on shared compute resources, where each component can perform
fairly sophisticated actions, software data planes are much more
susceptible to a range of subtle performance problems. We argue
that there are at least three classes of performance problems—those
arising due to mis-allocation of resources to software data plane
elements, contention amongst elements for shared resources, and
buggy design/implementation. Such problems either don’t arise
frequently in traditional hardware data planes (e.g., implementa-
tions with performance bugs are rare), or they are simpler to diag-
nose because only a handful of resources are allocated (e.g., band-
width and router buffering, vs. CPU, disk, memory, network etc. in
software data planes) and contention observed manifests at a small
number of locations (e.g., buffers building up or link utilization
growing vs. drops/buffering at a multitude of possible locations in
the virtualization stack—See Section 2.1). Furthermore, because
of stateful packet processing, problems arising in one middlebox
may quickly propagate up- or down-stream to other middleboxes
on an end-to-end path, which complicates accurate diagnosis of
root causes (See Section 2.2).

We design a general system, called PerfSight, for accurate and
quick diagnosis of a broad variety of performance problems that
may arise in current and future software data planes. Our approach
is rooted in viewing the software data plane as a pipeline of ele-



ments, where an element is a logical unit that reads traffic from or
writes traffic to another by buffers or function calls. This abstrac-
tion captures a variety of entities on the software data path, includ-
ing middlebox logic, routines in the hypervisor, and routines in a
VM’s network stack. We decouple the problem of statistics col-
lection from diagnosis. We identify elements and their input/out-
put methods, and statically analyze their code paths to determine
where packets can be buffered or dropped; we then instrument all
such locations to collect a suite of statistics in a light-weight fash-
ion. When queried by a controller at run-time, these statistics are
returned in a generic format, and then consumed by diagnostic ap-
plications to perform interesting analytics.

We develop two novel applications that aid in diagnosing key
software data plane problems, and we believe our approach covers
a large variety of potential problems that may arise. At a high level,
these diagnostic applications analyze the gathered element statistics
in different “dimensions”: e.g., across all VMs on a single physical
machine, or across a collection of middlebox VMs that are chained
together. We show that by identifying the exact locations in the
software data plane where the performance problems are arising—
i.e., which particular buffer or element in a VM, hypervisor or the
kernel is facing a problem—we can detect contention across VMs
vs. problems arising due to resource limitations within a single
VM. Similarly, by studying the nature of the performance prob-
lem faced by a middlebox—e.g., whether it is stalled for read vs.
writes—and in what status its neighboring middleboxes are (i.e.,
whether they are also stalled or not), we can quickly narrow down
the root cause middlebox(es) whose performance problems have
propagated throughout a chain.

We have built a prototype of PerfSight in an environment running
a Linux 3.2 kernel, Open vSwitch [7], and QEMU /KVM [12]. We
conduct several experiments with this prototype on a small scale
experimental testbed, using topologies representing chains of mid-
dleboxes, and a variety of workloads. We study the effectiveness
of PerfSight and find that in all cases PerfSight’s low level instru-
mentation provides accurate information about the exact location in
the software data plane of an observed performance problem. We
also find that PerfSight can identify contention for a variety of dif-
ferent shared resources (e.g., memory or network bandwidth, CPU,
or NIC capacity), it can accurately detect bottleneck middleboxes
irrespective of the specific resource that was under-provisioned,
and it can accurately pin-point the root cause of problems in com-
plex multi-chain settings where problems can arbitrarily propagate.
We also illustrate how an operator can use PerfSight to implement
cross-tenant workload management and elastic scaling in a multi-
tenant set-up. Finally, we show that PerfSight’s instrumentation
imposes an insignificant overhead (< 1%).

The remainder of this paper is organized as follows. In Section 2,
we describe the performance problems of software dataplanes and
motivate the need for a better diagnosis framework. In Section 3,
we sketch the high level architecture of PerfSight. Then, in Sec-
tion 4 and Section 5, we present the design of PerfSight’s two major
tasks— statistics gathering and diagnostic applications. Section 6
describes the implementation details. We present experimental re-
sults showing the accuracy and overhead of PerfSight in Section 7.
We present related work in Section 8 and conclude the paper in
Section 9.

2. BACKGROUND AND MOTIVATION
In this section, we first present software dataplane definition and

the performance problems associated with it. Then we talk about
the challenges in accurate software dataplane diagnosis and the
need for a better diagnosis approach.
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Figure 1: 3 Planes in the Cloud Architecture

2.1 Software Dataplane
While our work applies to general networking settings, for the

purposes of this paper, we focus on multi-tenant cloud data centers.
In this setting, tenants deploy virtual private clusters composed of
application end-points (this could be service software in the case
of private data centers, or VMs in the case of public clouds), net-
work function services (or middeboxes), and logical links between
subsets of them. Network functions improve network performance
or security, and tenants increasingly desire to deploy sophisticated
sets of middlebox functionality within their clusters [30].

This setting can be viewed logically as being composed of three
planes (Figure 1): control plane, application plane and data plane.
Tenants interact with the application plane, requesting (re)deployment
of virtual private clusters. The control plane, which the cloud op-
erator runs, responds to such requests by computing suitable de-
ployment policies, e.g., determining where VMs and middleboxes
ought to be placed, instantiating virtual links between VMs and
middleboxes (using tunneling schemes or encapsulation policies [30]),
and computing the forwarding state configuration to determine how
traffic traverses VMs/middleboxes and virtual links. The dataplane
for the tenant’s virtual cluster, where fast path actions are per-
formed on the tenant’s traffic, then follows the configurations pro-
vided by the control plane to deliver network traffic between the
appropriate end-points in each virtual cluster.

In this paper, we focus on middleboxes that are implemented
as software and deployed in VMs attached to virtual switches, an
increasingly popular trend also known as network functions virtu-
alization (NFV) [15]. In NFV, the middlebox VMs, similar to ap-
plication VMs, are allocated fixed resources (e.g. CPU, memory,
network bandwidth); the controller deploys all VMs to physical
machines that have sufficient resources.

Figure 2(a) shows a tenant with a simple virtual cluster, consist-
ing of an application VM and a firewall; furthermore, the tenant
requires all Internet traffic to traverse through the firewall. While
this is a simple example, virtual clusters can have much more com-
plex sequences of middleboxes, where a given sequence may only
apply to a specific traffic substream. The physical deployment com-
puted by the controller is shown in Figure 2(b). Consider the path
that Internet-originated traffic would traverse to arrive at the tenant
VM (and vice versa for the outgoing traffic). Each such packet is
forwarded by the cloud gateway to the physical NIC (pNIC) of a
physical server hosting the middlebox VM first; then it traverses
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the pNIC driver, the virtual switch, the hypervisor I/O handler, the
virtual NIC (vNIC), the vNIC driver and the VM guest OS network
stack, and finally arrives at the software firewall. After being pro-
cessed by the software firewall, the packet traverses all the layers
back down to the pNIC. Then it is delivered by the physical net-
work to the next hop in the virtual network (tenant VM or another
middlebox).

Whereas traditional dataplanes consisted just of hardware switch-
ing elements and network links connecting network end points, the
advent of NFV means that we need to rethink what constitutes the
data plane. In particular, it now also includes the software compo-
nents shown above that are traversed within middlebox VMs. We
refer to this portion of the data plane as the software data plane.

The software data plane is composed of a variety of elements,
each of which performs a certain logical function. In Figure 2,
each blue rectangle or oval is an element. The software dataplane
can thus be viewed as a pipeline of elements with data traversing
from one to the next. The output of one element is the input to its
successor. Neighboring elements exchange messages via buffers or
function calls.

Elements can be further divided into two categories: (a) Those
belonging to the virtualization stack: such elements are shared by
multiple VMs, and examples include the pNIC driver, the packet
processing routine, virtual switches and the hypervisor I/O handler;
(b) those belonging to the software middlebox: such elements are
confined to one middlebox VM, and examples include the vNIC,
vNIC driver, VM guest OS network stack and middlebox software.

In a multi-tenant setting, software data planes belonging to dif-
ferent tenants may “overlap” on one or more physical machines.

2.2 Performance Problems
In what follows, we argue that software data plane performance

problems can arise due to at least three underlying reasons. Further-
more, addressing the problem requires a different approach in each
case. A diagnostic approach therefore needs to carefully delineate
and accurately identify the root cause.

When the offered load on a middlebox exceeds the capacity allo-
cated to it (along some resource dimensions), the traversing flows’
throughput/latency will be bottlenecked. Because most middle-
boxes perform complex actions, such bottlenecks may arise not just
due to increased traffic volume but also due to sudden, unexpected

changes in the traffic profile. Addressing bottlenecks is up to the
tenant (e.g., the tenant can redeploy the middlebox in a “larger”
VM).

If multiple elements contend for a shared resource, and their
requirements exceed the available resource capacity, all involved
elements cannot achieve their expected performance. Such con-
tention usually happens in the virtualization stack, because all ten-
ant VMs and middlebox VMs in one physical machine share the
same datapath in the virtualization stack. What make things worse
is that the shared resource may not be explicitly allocated. For ex-
ample, it is hard to allocate memory bandwidth to individual VMs;
shared buffers in the virtualization stack are similarly not allocated
either. To address this, impacted middlebox VMs may have to be
migrated to locations with less contention. Often, this requires the
cloud operator’s involvement.

Design and implementation defects that lead to inefficient com-
putation widely exist in software, and thus software dataplanes are
naturally impacted by such performance bugs. Indeed, it has been
shown previously [33] that middlebox software bugs can result in
“soft failures” (e.g., a significant drop in throughput when middle-
box software is “upgraded”). To address such performance bugs, a
tenant must reload their VMs with a suitable version of software.

2.3 Accurate Diagnosis is Challenging
After a tenant experiences performance problems and submits

trouble tickets, we assume that she submits a ticket to her data cen-
ter operator. Because there are many different kinds of middleboxes
and a multitude of elements in software data planes, multiple mid-
dleboxes in a virtual cluster can often be operated in a sequence (or
“chained”), and multiple tenants’ clusters can overlap at arbitrary
physical machines; accurately diagnosing data plane performance
problems and identifying root causes is not easy for the operator.

A common approach to detect bottlenecks is to monitor the re-
source utilization on VMs [3]. While this may work in some cases,
there are a variety of middleboxes for which resource utilization
does not reflect workload intensity. For example, a video stream
transcoder [19] may employ non-blocking I/O instead of blocking
I/O to avoid context switching. For this middlebox, CPU utiliza-
tion is always 100%, but we lack a way of distinguishing the por-
tion of CPU cycles spent on processing vs. busy waiting. An-
other alternative—monitoring traffic volume changes—is also in-
sufficient as bottlenecks may arise due to changes in traffic profiles
(e.g., when a middlebox encounters a traffic profile that is different
from the one it was optimized for).

Contention is similarly hard to diagnose. Some OS statistics
such as packet drops at the pNIC can determine certain forms of
contention (e.g., for network bandwidth), but such statistics are not
always available today for other key resources. For instance, when
multiple VMs on a machine are performing heavy memory copies,
they contend with each other over the shared memory bus, which
is hard to diagnose due to lack of suitable statistics. Another rea-
son why contention is hard to diagnose is that its effects may only
be indirectly felt. For instance, a VM trying to saturate a certain
amount of network capacity may be unable to do so in the presence
of competing memory intensive workloads, because the two sets
of workloads contend for the memory bus (an empirical example
is shown in Figure 3). Simply monitoring memory utilization or
network packet drops does not reveal the root cause of contention.

The final factor that complicates diagnosis is that performance
problems in a middlebox—arising due to, e.g., bugs—may prop-
agate across a virtual cluster due to the chaining of middleboxes.
The upshot is that the wrong middlebox may be identified as being
the root cause of poor performance in a chain or cluster, and incor-
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Figure 3: There are 8 VMs in a 8-core hypervisor with a
10Gbps NIC. Some of the VMs perform intensive memory copy
operations, and the others send traffic to another machine by
best effort. We vary the memory copy workload and mea-
sure the total throughput of the memory and the network re-
spectively in each case. When memory throughput is low, the
NIC capacity is fully saturated (10Gbps). However, when the
memory throughput exceeds a threshold, every 1 GB/s increase
of memory throughput causes 439 Mbps decrease of network
throughput.

rect/inefficient counter-measures may be adopted. In Section 7 we
will show such an example—a load balancer, a content filter and
an HTTP server form a chain and the content filter writes logs to
a shared NFS server (see Figure 12(d)). When the NFS server has
a bug, performance degrades in the whole chain. In this case, it is
challenging to find out the root cause middlebox.

2.4 Need for a New Approach
Existing troubleshooting techniques such as Anteater, HSA, NICE,

Libra, etc. [31, 24, 14, 37] focus on the correctness of the net-
work; thus, they cannot be used to detect performance problems.
Tools such as ping and traceroute provide end-to-end tenant-level
information which cannot pin-point root causes (e.g., those due
to contention) accurately. Other diagnostic frameworks, such as
NDB and VND [20, 35], collect traces on the datapath, either at
network switches (NDB), or at vNICs or pNICs (VND). This can
impact performance (of multiple tenants’ virtual clusters) signifi-
cantly. But, more importantly, such traces don’t provide enough
information to perform accurate root cause diagnosis; e.g., they
cannot determine that packets were dropped due to memory con-
tention.

Thus, we argue for a ground-up comprehensive framework for
software dataplane diagnosis. We posit that given the complexity
of the software data plane, a framework that performs low-level,
broad instrumentation of various elements in the software data-
plane, coupled with suitable analytics, can provide accurate and
useful diagnoses.

3. PERFSIGHT OVERVIEW
We design and implement a system for software data plane di-

agnosis called PerfSight. Figure 4 shows the architecture of Perf-
Sight. It has 3 high level components: an agent running on each
physical server, a central controller, and a set of diagnostic applica-
tions atop the controller.

Diagnostic applications are developed using the controller-operator
interfaces. These applications query the software data plane for
various statistics; the controller then translates these to queries is-
sued to agents running on the corresponding physical servers. The
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Figure 4: PerfSight Architecture

agents interrogate the relevant elements for statistics, and report the
gathered statistics back to the application.

PerfSight uses a simple unified low-level interface for record-
ing/retrieving statistics of the software data plane elements. This
abstracts the complexity arising from the diversity of the data plane
elements, and simplifies the task of designing analytics engines.
The interface can be extended so that operators can easily enrich
the set of statistics gathered.

PerfSight decouples data collection from analytics so that each
can be improved or replaced by more advanced techniques. Perf-
Sight’s analytics applications work by performing aggregate diag-
nostics on the gathered statistics; more specifically, these applica-
tions jointly analyze data gathered across multiple instances of a
middlebox, multiple middlebox VMs deployed on a single server,
or multiple middleboxes deployed in one or more virtual clusters,
to accurately pin-point the root cause of the observed performance
problem.

In what follows, we first describe what statistics we collect and
how they are collected. Then, we describe how these statistics are
analyzed to obtain insights into software data plane performance
problems.

4. STATISTICS GATHERING
The key insight we leverage to perform software dataplane diag-

nosis is to view the dataplane as a pipeline of low-level elements.
By instrumenting at the element-level, we can obtain fine-grained
statistics at key points in the software data plane. These then form
the basis for interesting and accurate diagnostic applications. In
what follows, we describe how we obtain element-level statistics
on throughput, packet drops, and packet size. The key challenge
lies in understanding where and how to instrument elements such
that the data collection overhead is minimal.

4.1 Element Abstraction and Statistics
Figure 5 shows the elements and buffers in a virtualization envi-

ronment that uses a Linux kernel, QEMU/KVM, and Open vSwitch
(OVS). Each element receives packets from its predecessor, pro-
cesses them based on internal logic, and delivers them to its suc-
cessor. The exchange of packets between elements is often imple-
mented by a buffer between them or by function calls. For example,
in Figure 5, the pNIC driver and the packet processing routine (e.g.,
the NAPI routine in Linux) use the physical CPU (pCPU) backlog
(a buffer) to exchange messages, whereas the NAPI routine and
virtual switch use function calls.
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Figure 5: Elements in a Software Dataplane (QEMU/KVM, Open vSwitch, Linux)

Each element has input methods and output methods. For exam-
ple, in the pNIC driver, the interrupt handler reads from the pNIC
(or DMA mapped memory) and enqueues packets to the CPU back-
log queue; the NAPI routine dequeues packets from the CPU back-
log and calls the virtual switch frame handling function; the virtual
switch frame handling function writes packets to a TAP’s socket
which is associated with a VM; and, the hypervisor I/O handler
reads packets from the TAP and writes packets to the associated
vNIC.

In each element, by analyzing its code, we can determine the
code path that a packet traverses from input to output and possi-
ble code branches that might drop it. Statistics—e.g., how many
bytes/packets were received/sent/dropped—of the traffic on the dat-
apath between an element’s input and output methods can be then
recorded by instrumenting the code path and relevant branches.
Another key statistic we gather is I/O time. This records the time
spent on an I/O method (read and write). This can also be obtained
in an easy and light-weight fashion by comparing the timestamps
before and after the read/write function in an element. I/O time can
reveal whether an element is facing starvation, and it plays a par-
ticularly crucial role in the diagnosis of propagation issues, as we
show in Section 5.

In our current implementation, we perform the instrumentation
task manually and exhaustively, but we believe it can be automated
using program analysis. Interestingly, we find that many useful
statistics actually don’t require special instrumentation as they can
be readily gathered, and hence statistics gathering imposes low
overhead in this case. This is particularly true for elements residing
in the host OS kernel. For example, packet count and byte count are
basic statistics that already exist in most kernel elements. For other
elements, e.g., those in the hypervisor and those inside middlebox
software, we perform the instrumentation as indicated above; our
extensive evaluation (Section 7) shows that the overhead is very
low.

Our current prototype of PerfSight extracts/implements the 3
types of counters in each element: a packet counter, a byte counter,
and an I/O time counter. The packet and byte counters are used
by all types of elements while I/O time counter is only used for
elements that interact with buffers. The counters accumulate as
packets are processed.

Aggregate statistics such the instantaneous/average packet drop
rates, throughput, and packet size can then be easily derived per el-
ement from these statistics. Operators can implement more compli-
cated statistics at an element such as packet size distribution track-
ing if they can accept the resulting performance impact.

Our manual inspection of the code of many middleboxes, virtual
switch implementations, and hypervisors has shown that several
key entities in software data planes map to this abstraction. Thus,
this abstraction is reasonable, and Section 5 shows that it is useful
for diagnosis purpose. We show that our proposed statistics suffice
to successfully diagnose the performance problems we discuss. In
general, though, the set of statistics collected may fall short. That
said, PerfSight itself is a framework, and, if necessary, the operator
can add more statistics to suit her diagnostic needs.

4.2 Agent
An agent in each physical server gathers element statistics. To

reduce overhead, the agent pulls counter values from elements only
when required. Due to the diversity of elements, especially across
the kernel, hypervisor and the middlebox software, the element/a-
gent interfaces are tailor-designed for each type of element. In par-
ticular, we use custom APIs for elements in the kernel: e.g., in the
NIC driver and the TAP, the counters are in net_device, and they
can be accessed by reading the corresponding device file in the file
system. When the NAPI routine processes packets in CPU back-
logs, statistics are stored in the data structure softnet_data, and they
can be accessed via /proc in the file system. In virtual switches,
each switch rule has its own statistics and can be fetched by vir-
tual switch control channels. For elements in the hypervisor and
middleboxes, we design a common generic element-agent API.

After fetching statistics from elements, the agent provides statis-
tics to the controller in a simple, unified format, which is as follows:

<TimeStamp, Element, (attr1, value1),
(attr2, value2), (attr2, value3)...>

That is, the response of a query to an element returns the times-
tamp, element ID, and a list of <attribute, value> pairs, where
each pair describes a counter and its value at that timestamp. For
example, a NIC driver’s statistics can be described as

<t1, eth0, ("Rx bytes", v1),
("Tx bytes", v2), ... >

This interface is generic and simple for infrastructure operators
to extend the statistics. When an operator needs to add a cus-
tomized counter, she would need to add the counter into related
elements, add logic in the agent to fetch this counter and add the
result to the message that is returned to the controller.

4.3 Controller
The PerfSight controller delivers statistics requests and responses

between operators and agents. When the operator requests a virtual



cluster’s information, the PerfSight controller obtains the physical
location of the related virtual elements and sends requests to the
agents of those elements.

function GETATTR(tenantID,elementID,attributes)
return vNet[tenantID].elem[elementID].attr[attributes]

function GETTHROUGHPUT(tid, eid)
attr← [“time", “bytes”]
<t1, b1>← GETATTR(tid, eid, attr)
sleep(T)
<t2, b2>← GETATTR(tid, eid, attr)
return (b2 − b1) / (t2 − t1)

function GETPKTLOSS(tid, eid)
attr← [“inPkts", “outPkts"]
< b1i, b1o >←GETATTR(tid, eid, attr)
sleep(T)
< b2i, b2o >←GETATTR(tid, eid, attr)
return (b2i − b2o) − (b1i − b1o)

function GETAVGPKTSIZE(tid, eid)
attr← [“bytes", “pktCount"]
<b1, c1>← GETATTR(tid, eid, attr)
sleep(T)
<b2, c2>← GETATTR(tid, eid, attr)
return (b2 − b1) / (c2 − c1)

Figure 6: Basic Utility Routines

Through controller/operator interfaces, the operator can query
the attributes of each element. To retrieve the attribute of an el-
ement in a virtual cluster, the PerfSight controller first finds the
physical location of the element, i.e.,
vNet[tenantID].elem[elementID], and then sends a request for at-
tributes to the element’s agent, and finally receives the requested
attributes’ values.

This interface can be used by an operator to perform basic moni-
toring of the performance of specific portions of her infrastructure.
Figure 6 provides examples of basic utility routines for monitoring
element states. As we argue next, interesting diagnostic applica-
tions can be built on these statistics.

5. DIAGNOSIS
The most interesting aspect of PerfSight is the set of diagnostic

applications it enables. In what follows, we show how the statis-
tics gathered in the aforementioned fashion can be used to develop
algorithms that help resolve the performance problems central to
software dataplanes that we mentioned in Section 2.

5.1 Detecting Contention and Bottleneck Mid-
dleboxes

Before we describe our algorithms, we give a few comments on
how contention and bottlenecks manifest, and what makes detec-
tion hard.

Contention: VMs on the same physical server can contend for
hardware or software resources in the virtualization stack. Return-
ing to the example situation outlined in Sections 2.2 and 2.3, mem-
ory bandwidth was the shared hardware resource in contention; in
yet other situations, hardware resources such as CPU and the NIC
may be in contention. Likewise, in Figure 5, the shared datapath of

Algorithm 1 Detect Contention and Bottleneck
1: function FINDCONTENTIONANDMIDDLEBOX()
2: elements← { e | e ∈ virtualization stack }
3: elemLoss← ∅
4: for e ∈ elements do
5: loss = GETPACKETLOSS(e)
6: elemLoss.add(<e, loss>)
7: return SORTBYLOSS(elemLoss)

input traffic and output traffic (purple/solid arrows) can be the soft-
ware resource in contention; similar contention can arise for other
software resources such as shared buffers/queues.

However, not all contentions display explicit symptoms. Among
hardware resources, high CPU, memory and network utilization
are explicit symptoms of contention, but memory bandwidth con-
tention does not have an explicit manifestation. Whether symp-
toms of contention for software resources can be observed depends
on the software implementation. For example, OVS provides QoS
and statistics by which contention can be directly identified, but
not all elements in the virtualization stack have appropriate instru-
mentation to enable such direct identification. Thus, on the whole,
resource contention in the virtualization stack is difficult to detect.

Bottleneck Middlebox: A bottleneck middlebox is constrained
by the amount of resources allocated to it, but, as discussed in Sec-
tions 2.2 and 2.3, whether a middlebox is a bottleneck cannot be
judged solely based on its resource utilization.
Accurate Detection: The main idea underlying our diagnostic ap-
plication here is as follows: Elements in the virtualization stack
deliver packets to each other via intermediate buffers or function
calls, and they typically use nonblocking I/O in doing so. That is,
if an element cannot write to its successor, or its target buffer is
full, packets get dropped. Thus, we obtain the packet loss of each
element in the software data plane, and use it to locate where VMs
are contending for resources or whether a VM is under-provisioned
along some resource.

The application is designed as shown in Algorithm 1. For each
element in the virtualization stack, we use the utility routing GetPk-
tLoss() to obtain its packet loss; we sort all elements by their packet
loss. Finally, the element with most packet loss is returned. This
application monitors all related elements in the virtual network, so
its cost is proportional to the size of the virtual network.

Crucially, the location of packet loss reveals the possible re-
sources that VMs are contending for or are in shortage of. To aid
in this, we build a simple offline rule book that maps packet loss
locations to specific resources that may be running low or facing
contention.

We construct the rule book as follows: we set up a variety of ex-
periments where VMs contend for different resources, and we ex-
haustively track possible packet loss locations (details are in Sec-
tion 7.1). The result is summarized in Table 1. Some symptoms
reveal the resource in contention directly; for example, if incoming
traffic exceeds pNIC capacity, packets are dropped at the pNIC.

In some cases, different kinds of contentions can have the same
symptoms making detection hard: e.g., contention on CPU and
memory bandwidth both lead to VMs being unable to fetch pack-
ets from TUN to vNIC, causing TUNs to drop packets which is
the only externally visible symptom. In such cases, the operator
can combine this with other symptoms such as CPU utilization and
NIC throughput to distinguish the specific root cause.

Bottleneck middlebox detection is similar: when a tenant’s de-
ployment is facing end-to-end performance problems (and the ten-
ant complains about it), the operator first selects middleboxes with



Table 1: Resource in Shortage and Symptom Rule Book
Resource in Shortage Packet Drop Location

CPU TUN (aggregated)
Memory Space pNIC Driver

Memory Bandwidth TUN (aggregated)
Incoming Bandwidth pNIC
Outgoing Bandwidth Backlog Enqueue

pCPU Backlog Backlog Enqueue
VM Bottleneck

(CPU or Bandwidth) TUN (individual)

high resource utilization and includes them in a “suspicious” set;
in the degenerate case (e.g., when no high utilization is apparent)
all of the tenants middleboxes could be included in this set. Then,
we use our light-weight statistics to distinguish those middleboxes
that are facing legitimate issues, such as packet drops, against those
whose resources naturally run at a high utilization but are otherwise
not bottlenecks (e.g., a video encoder). Thus, we can more accu-
rately pin-point bottleneck middleboxes.

Contention and bottleneck can be distinguished based on whether
loss is spread across multiple VMs (contention) or confined to on
VM’s software data path (bottleneck).

5.2 Combating Propagation
Performance problems, e.g., due to implementation bugs, in one

middlebox in a chain may propagate to others, causing them to ap-
pear to perform poorly as well. In particular, as we show below,
the other middleboxes may appear to have stalled reading/writing
from/to the network or I/O devices. Given this, however, determin-
ing the root cause middlebox can be challenging.

In what follows, we show how the statistics gathered by Perf-
Sight can be used to infer the specific states that different middle-
boxes are operating under—e.g., under/over-loaded and read/write-
blocked—which can then be used to identify the root cause.

Analysis and key insights Before describing our algorithm for
identifying the root cause middlebox, we first present the underly-
ing insights in identifying the states of different middleboxes in a
chain.

In virtual settings, middlebox software exchanges data with the
guest OS. Consider some time interval ttotal; from the middlebox’s
perspective, this time interval can be split across the middlebox
performing input, processing, and output. Thus, we have

ttotal = tinput + tprocess + toutput.

The input/output time is constituted by block time, tblock, and mem-
ory copy time, tmemcpy; i.e.:

tinput/output = tblock + tmemcpy.

Input block time is the time spent waiting for new data, and out-
put block time is spent waiting for buffers in kernel to be ready
(e.g., waiting for TCP sending window to open up). Memory copy
time is the time spent on copying data between user space and ker-
nel space. When the middlebox software is blocked or processing,
the kernel is waiting for packet arrival or transmiting data from/to
vNIC.

The input function of middlebox software (e.g., recv() in TCP,
FromDevice() in Click [27]) fetches data from kernel space to user
space. If the buffer in kernel is ready with data, the input func-
tion is not blocked (tblock = 0), so the input method is as fast
as a memory copy (which is at least 2 orders of magnitude faster

Overloaded TCP Underloaded TCP 

Underloaded Overloaded 

WriteBlocked ReadBlocked 

(a) Middlebox and TCP States

An Underloaded node causing successor to be ReadBlocked 

An Overloaded node causing successor to be ReadBlocked, 
and predecessors to be WriteBlocked 

(b) State Propagation in a Chain

Figure 7: Middlebox States and Propagation

than network transmission). Assume that during the input function
reading b bytes data from the kernel, the vNIC capacity isC and the
memory copy speed is Cmem; in general, we have Cmem � C.

Thus, when there is no input blocking, we have:

tinput = tmemcpy =
b

Cmem
� b

C
.

Thus, we can define a middlebox is ReadBlocked if it satisfies

binput

tinput
< C,

where binput is the bytes read by the input function.
Similarly, when the output function (e.g., send() in TCP, ToDe-

vice() in Click) sends data, the data (b bytes) would be copied from
the user space to kernel space. As before, if the output function is
not blocked,

toutput �
b

C
.

Thus, we can define a middlebox is WriteBlocked if it satisfies

boutput
toutput

< C,

where boutput is the bytes written by the output function.
If two neighboring (in virtual topology) middleboxes use non-

blocking I/O methods (e.g., packet-level processing) to exchange
messages, their states do not impact each other. If they use TCP,
TCP’s congestion control makes the middlebox states influence
each other, causing propagation. In particular, there are two pos-
sibilities: (1) the TCP sender does not send fast enough, causing
the receiver to be ReadBlocked, (2) the receiver cannot receive or
process data quick enough, causing the sender to be WriteBlocked.
We define the sender in (1) as Underloaded and the receiver in (2)
as Overloaded (Figure 7(a)). In a chain of TCP connections, an Un-
derloaded source causes all its successors to be ReadBlocked, and
an Overloaded middlebox causes all its predecessors to be Write-
Blocked and successors to be ReadBlocked (Figure 7(b)).
Accurate Detection Of Root Cause(s) Based on the above anal-
ysis and insights, we develop the following algorithm (see Algo-
rithm 2) underlying diagnostic application for determining the root
cause middlebox(es): each middlebox’s statistics are fetched (in-
cluding input/output bytes/time and the middlebox vNIC capac-
ity) (line 7). Then their respective states—under/overloaded, and



Algorithm 2 Locate Root Cause Middlebox
1: function GETSTAT(tid, mb)
2: attr←[“inBytes",“inTime",“outBytes",“outTime"]
3: return GETATTR(tid, mb, attr)
4: function GETROOTCAUSE(tid)
5: midboxes←{mb|GetAttr(tid,mb,“type")=“middlebox"}
6: cand← midboxes
7: for mb ∈ midboxes do
8: C ← GETATTR(tid, mb, “Capacity")
9: < b1i, t1i, b1o, t1o >← GETSTAT(tid, mb)

10: sleep(T)
11: < b2i, t2i, b2o, t2o >← GETSTAT(tid, mb)
12: if (t2i − t1i > (b2i − b1i)/C) then
13: mb.state = ReadBlocked
14: cand←cand−GETSUCCESSOR(mb)−mb
15: else if (t2o − t1o > (b2o − b1o)/C) then
16: mb.state = WriteBlocked
17: cand←cand−GETPREDECESS(mb) −mb
18: return cand

read/write blocked—are computed based on the statistics (line 12-
15). If a middlebox is ReadBlocked, all its successors are wait-
ing for its data and are also ReadBlocked; we filter out the entire
such chain of ReadBlocked middleboxes from the suspicious can-
didates (line 14). Similarly, a WriteBlocked middlebox and all of
its predecessors can be filtered out (line 17). The remaining mid-
dleboxes in the candidate set are returned (line 18) as the plausible
root cause middleboxes. In Figure 7(b), this algorithm would iden-
tify the green middlebox in the first chain and the red middlebox
in the second chain as the root cause. This application monitors all
middleboxes in a virtual network, so its cost is linear to the size of
the virtual network.

6. IMPLEMENTATION
Most elements (e.g., NIC driver and virtual switch) already have

their own counters and logs implemented—in these cases, Perf-
Sight simply makes use of the existing ones; if some counters are
missing in an element, we instrument the elements and add aug-
mented counters. The communication channel between an element
and the corresponding agent on the physical server is implemented
specifically according to the element. In the following paragraphs,
we will describe the implementation details at each key element
that a packet goes through on the software dataplane. The envi-
ronment we use to simulate the cloud is Linux kernel v3.20, Open
vSwitch and QEMU 1.

For the physical NIC, the Linux kernel maintains a data struc-
ture called net_device which records received/sent bytes/packets.
net_device can be accessed via the file system interface from userspace
(e.g., ifconfig). The PerfSight agent uses this. In the NAPI rou-
tine which processes packets in CPU backlog queues, a data struc-
ture called softnet_data is maintained for each queue. softnet_data
records packets dropped between the CPU backlog queue and the
target callback function (i.e., virtual switch packet handler). This
record is accessable from the /proc file system. In virtual switches,
each rule has statistics for packets processed and dropped. The
statistics are accessable via the OpenFlow control channel. A TAP’s
transmit function enqueues a packet into a socket queue. The TAP
has a net_device record to keep track of Rx/Tx byte/packet counts,
which are accessible via file system. QEMU, which delivers pack-
1Currently our solution is limited to this platform, but we believe
PerfSight is a general solution to all platforms.

ets from TAP socket to a vNIC data structure, does not have intrin-
sic statistics. Thus, we instrument it to obtain statistics in QEMU.
We write these counters into logs and PerfSight fetches the coun-
ters’ values from the logs. Inside the middlebox VM (in the guest
OS kernel), the difference from the virtualization stack is that the
NAPI routine delivers a packet from vCPU backlog queues to an-
other buffer in the kernel (e.g., socket). The statistics records are
then similar to the virtualization stack. Middlebox software reads
packets/messages from the kernel via system calls. After a mid-
dlebox performs its own processing, it sends packets/messages out
to the guest OS kernel via system calls. We instrument middlebox
software to record Rx/Tx byte/packet counts and the time spent on
reading from/writing to the kernel. In PerfSight, we use sockets
between middlebox software and the agent corresponding to the
physical server on which the middlebox is located to fetch these
counters.

When a middlebox sends a packet out, the packet is delivered
across several elements and finally put into the pCPU backlog. The
write function to the kernel calls the vNIC transmit function, which
causes an interrupt in QEMU. The interrupt handler in QEMU calls
the transmit function in the TAP. The TAP transmit function en-
queues the packets into the pCPU backlog queue. When dequeued,
the packet is processed by the virtual switch and sent to another de-
vice’s (another TAP or pNIC according to the packet’s destination)
transmit function. In each layer that the packet goes through, the
instrumentation and communication with the agent is similar to the
packet receiving datapath.

Discussion. We assume that the cloud provider offers the vir-
tual network services and the NFV service, so they have the source
code. PerfSight is a framework, and it defines interfaces between
components. Even if some services (e.g. middlebox) are provided
by third party, they can use the interface to provide statistics so that
PerfSight can perform diagnosis.

7. EVALUATION
To evaluate PerfSight, we set up a cluster with Dell T5500 servers,

each of which has 8 cores, 16GB memory and a 10Gbps NIC. Each
server runs Ubuntu with Linux kernel 3.2. We use Open vSwitch,
QEMU to set up the virtualization stack. We install middlebox soft-
ware in VMs and route tenant traffic to traverse the VM to simulate
NFV-like settings.

In what follows, we first validate the basic functionalities of Perf-
Sight, and then show the effectiveness of using PerfSight by illus-
trating how it can diagnose performance problems, reflecting the
examples outlined in Section 2. Finally we show that it imposes
negligible overhead.

7.1 Functional Validation
In what follows, we experimentally illustrate that PerfSight works

as expected, using the example of the packet loss function (Section
4.3).

In this experiment, we start 8 VMs on a physical machine. Two
of these VMs function as middleboxes and the rest as tenant VMs.
The middlebox software we use is that of a load balancer [1]. We
start a handful of long-lived TCP flows that traverse the middle-
box VMs, and we monitor their throughput. Over time, we inject
various performance problems. All the while, we run PerfSight’s
packet loss function at various software data plane elements in the
8 VMs to identify if, when and where packet loss happens.

The results are shown in Figure 8. We plot the average through-
put of the middlebox flows on the left y axis, and the packet drop
counts on the right y axis. During the interval 10-20 seconds, we
flood a large amount of packets into the physical machine (these are
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Figure 9: Response Time between Agent and other components

received by the non middlebox VMs). As such, the virtualization
stack cannot clear the pNIC DMA buffer quickly enough, leading
to lower TCP throughput for the middlebox VMs. What we noticed
from PerfSight was that packets were dropped in the pNIC, which
is as we expected (Table 1). During 30-40 seconds, the tenant VMs
(non middlebox) flood a large amount of outgoing packets impact-
ing middlebox traffic throughput. The flooded packets quickly fill
up the CPU backlog first, leading to drops there for middlebox traf-
fic, which is again as expected (Table 1). During 50-60 and 70-80
seconds, we make tenant VMs perform CPU intensive and mem-
ory access intensive workloads. As a result, the middlebox VMs
do not acquire enough resources to process packets. This causes
their packets to be accumulated and dropped at the TUN’s socket
buffer (which is the last buffer before entering VMs). When VMs
are contending for resources, all VM’s performance are impacted,
so all VMs are dropping packets. While the above showed various
forms of contention and interference, we now illustrate a single VM
becoming a bottleneck. During 90-100 seconds, we start a CPU in-
tensive workload inside one middlebox VM. From PerfSight, we
note that only that VM drops packets at its associated TUN.

Response Time. The agent on each physical machine is the pivot
of data collection and delivery. We measure how quickly the agent
can exchange data with other components. As is shown in Figure 9,
fetching statistics from network devices (e.g. TUN, pNIC) costs
about 2ms, and all other components’ statistics collection can be
completed in 500us. This time granularity is fine enough to closely
monitor the network states.
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Figure 10: CPU Backlog Queue Contention Detection Example

7.2 Diagnosis Accuracy
We now establish PerfSight’s accuracy. We first conduct two

experiments for detecting contention.
Detecting contention in virtualization stack (case 1). In Fig-

ure 5, we can observe that the pCPU backlog queue is exercised by
multiple datapaths, which leads to the risk of it becoming a location
where significant contention arises.

We set up two VMs – VM1 and VM2 – in a physical machine,
and then make VM1 receive network traffic with a rate limit of
500Mbps. Roughly 10s into the measurement, we make VM2 send
small packets as fast as it can. At this time, VM2’s throughput
decreases and oscillates; see Figure 10.

To diagnose this contention problem, PerfSight first checks if
the VMs are overwhelming the NIC. VM2’s peak sending rate (ob-
tained using the GetThroughput() routine) is 250K packets per sec-
ond (80Mbps); thus, the sum of the sending and receiving rates
is well below the NIC capacity (1Gbps). PerfSight then checks
packet drop counters at various elements in the virtualization stack.
We found that the enqueue element in the virtualization stack (Fig-
ure 5) saw significant drops, and because outgoing bandwidth is
not the problem (Table 1), the resource under contention ought to
be the pCPU backlog queues (Table 1).

In a virtualized setup, both the incoming and outgoing packets
are put into pCPU backlog queues first, and then forwarded dur-
ing backlog processing. However, each CPU core’s backlog queue
length is limited to 300 packets. In our example, VM2 overwhelms
the pCPU backlogs by flooding a large amount of small packets,
and only a handful of VM1’s packets can ever be enqueued into
the backlog queue. This manifests as many more packets of VM1
arriving into the enqueue element and far fewer making it out.

Without PerfSight helping us identify where exactly packets are
getting dropped and tying that back to the resource under con-
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tention (Table 1), it is difficult to determine the reason for VM1
and VM2 interfering with each other’s performance.

Detecting contention in virtualization stack (case 2). Along
the lines of the example Section 2, we simulated a machine with
significant oversubscription in the virtualization stack. We start by
running on a machine some number of VMs performing network
transfers initially; their total network throughput is about 3.25Gbps
as shown in Figure 11(a). At time 20s, another set of VMs start
to access memory intensively. The total network throughput de-
creases to 1.7Gbps, because the two sets of VMs are contending
for the memory bandwidth. We assume that the tenant running the
former set of VMs wishes to diagnose this problem.

We observe that the physical machine is dropping packets at
the network-intensive VMs’ TUNs (Figure 11(b)). Thus, we infer
that the machine’s memory or outgoing bandwidth are overloaded
(based on Table 1); at this time, we cannot distinguish which spe-
cific resource is experiencing contention. In response, wearing the
operator’s hat, we migrate some of the network-intensive VMs, and
the network throughput recovers to the original 3.2Gbps.

Combating propagation. We validate our approach for iden-
tifying poorly-performing middleboxes in the face of propagation
of problems where root cause cannot be obviously identified. The
scenario we use is a multi-chain setting shown Figure 12(a): we
deploy a load balancer (Balance [1]) and two content filter proxies
(CherryProxy [2]) between clients and HTTP servers. We make the
two content filter proxies output logs to a shared file system (NFS).
All VMs’ vNIC capacity are set to be 100Mbps.

In this virtual network, we simulate different cases and perform
diagnosis; we find that our application always determines the root
cause accurately. We conducted a variety of experiments where
different points in this multi-chain are problematic and the issues
can propagate arbitrarily through the chains, but for simplicity we
focus on those exercising the VMs shown within the box shown
by the dashed red line. For each experiment (figures b, c, and d)
we show the performance metrics we derived for each middlebox
(e.g., b/tin, b/tout ), and the corresponding state we inferred for
the middlebox.

In our first experiment, we make the client perform HTTP POSTs
as fast as possible (with the idea of creating a bottleneck at the
server within the dashed red box); we observe the state of middle-
boxes and determine that the load balancer and the content filter are
WriteBlocked and the NFS server is Readblocked (Figure 12(b)).
From this, our algorithm infers that server 1 is overloaded, identi-
fying the true bottleneck.

In a second run, we have the client make HTTP POST requests
at a slow rate. We monitor middlebox states and determine that
other middleboxes are ReadBlocked, leading our algorithm to con-
clude that the client is Underloaded, which is indeed the case (Fig-
ure 12(c)).
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As a final experiment, we inject an internal error (memory leak)
into the NFS server,2 causing it to become overloaded. The prob-
lem propagates through the chain middleboxes within the dashed
red box, causing the load balancer and the content filter to be Write-
Blocked. Using our algorithm, we exclude the ReadBlocked and
WriteBlocked middleboxes and correctly determine that the NFS
server is the bottleneck (Figure 12(d)).

7.3 Using PerfSight
We now consider a richer setting where we illustrate how we

envision an operator using PerfSight. We show how an operator can
detect and respond to contention and bottlenecks. We then describe
propagation.

We use a setup with two tenants each with their own virtual net-
work. Each network has a server, a load balancer proxy and a client
with the client sending traffic to the server (Figure 14). We assume
that the operator places the two load balancers in the same physi-
cal machine. We measure both tenants’ throughput and show it in
Figure 13.

Initially (0-10s), tenant 1 sends traffic at 180Mbps, while tenant
2 intends to send two flows at 360Mbps in total. However, tenant
2’s load balancer can only process 200Mbps traffic, so tenant 2’s
total throughput is constrained by its load balancer. At this point,
using PerfSight the operator identifies that the TUN of load bal-
ancer 2 is dropping packets and it is in an Overloaded state. Thus,
the operator has identified tenant 2’s bottleneck. Between 10 and
20s, the operator introduces a management task that happens to be
memory access intensive into the physical machine. The operator
finds that both tenants’ load balancer VMs are impacted, they’re
dropping packets at their TUNs, and they’re in ReadBlocked state.
The operator identifies memory bandwidth over-subscription and
responds by migrating the memory intensive task elsewhere. Thus,
we see that the throughput immediately reverts to the original value
(20-30s). However, this still does not address the bottleneck that
tenant 2 is facing at its load balancer. After determining that ten-
ant 2 is bottlenecked at its load balancer, the operator scales it out
and reroutes half of tenant 2’s traffic to the new instance. The total
throughput increases to 360Mbps and no packets are dropped at the
load balancers.

2CentOS bug track 7267.
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Table 2: Throughput with/without Time Counters
1: Blocked, without Counters, 2: Blocked, with Counters

3: Overloaded, without Counter, 4: Overloaded, with Counters.
Each experiment is repeated for 100 times

Experiment 1 2 3 4
Mean µ (Mbps) 42.02 41.79 499 490.2

Variance σ2 4.57 4.92 1554 1281

7.4 Overhead and Scalability
Overhead. Among the counters we implemented, packet counts/bytes

are simple/low overhead because each time they are incremented by
a value; time counters are a bit more complex because they need to
get time twice, and accumulate the difference. We first measure
the time spent to update a counter. We find that simple counters
consume 3ns per update, while a timer counter consumes 0.29us
per update in our testbed. Even with the maximum throughput of
10Gbps and 1500 bytes MTU, each packet takes 1.2us to traverse
an element. Thus, the simple counters impose 10−3 smaller over-
head, which is negligible.

However, the time counters do have an impact on performance.
If an element is overloaded and CPU bound, time counters would
cost extra CPU cycles, which degrades the element’s performance.
To delve into this, we build a virtual network with an HTTP server,
an HTTP client and a proxy. The client uploads data to the server
via the proxy. In this setting, if we limit the client’s sending rate (on
its vNIC), the proxy will be ReadBlocked; if not, TCP would satu-
rate the virtual link and cause the proxy to become Overloaded. We
compare the throughput between the cases where the proxy is/not
instrumented with time counters. The result is shown in Table 2.
We can conclude that the impact of the time counters is very small
(under 2% in terms of throughput; we also found the average la-
tency impact to be under 1.5% (not shown for brevity)).
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Figure 15: Time Counter Overhead within Middleboxes

We repeat the similar experiments on different kinds of middle-
boxes [10, 1, 6], and show the results in Figure 15. In all kinds of
middleboxes, the impact is less than 5%.

Another source of overhead is from polling these counters. The
overhead is shown in Figure 16, and it still very small. Even if we
poll them every 100ms (which is generally sufficient for the kind of
diagnostics we wish to run), the CPU utilization is less than 0.5%,
which is negligible.

Scalability. Our experimental set up is indeed small, but we be-
lieve that our system’s response time and overhead will stay small
even at larger set ups due to the following reasons: (1) The statistics
gathering is distributed in each element, so it’s not likely to become
a bottleneck. (2) The diagnostic applications’ complexity is O(n)
where n is the number of involved elements. (3) Cloud operators
can aggregate tenants’ tickets to diagnose if they have elements
overlapping with each other.

8. RELATED WORK
The systems and networking communities have developed a va-

riety of diagnostic tools and frameworks. In this section, we place
PerfSight in the context of these prior frameworks.
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Figure 16: Query Frequency and CPU Usage

sFlow, NetFlow, ndb, tcpdump, X-Trace and SNAP [20, 9, 17,
36] provide various ways to collect key information from the net-
work (and from network attached systems). Unfortunately, these
techniques don’t provide fine-grained information about which spe-
cific parts of the software data plane are facing/imposing problems.
As a result, they are far less useful in diagnosing and fixing sub-
tle software data plane issues. For example, compared with SNMP
which only defines the format of management messages, PerfSight
has statistics gathering, framework (interfaces) and diagnostics ap-
plications, so PerfSight is a complete diagnostic solution. Further-
more, some of these techniques (tcpdump and SNAP) can impose
a high overhead.

Recent solutions such as header space analysis (HSA), NICE,
Libra, Anteater, NetPlumber, VeriFlow [25, 24, 14, 37, 31, 23]
are also useful for diagnosing virtual networks. However, they are
not very useful toward diagnosing performance problems. In con-
trast with general network reachability issues that the above tools
are very capable at helping with, performance problems are much
more tricky: they are often ephemeral; they can manifest unexpect-
edly, e.g., under specific corner-case workloads; and, they can arise
due to a wide variety of different issues (mainly because of the
complexity of the software data plane), as a result of which doing
root cause detection, and fixing the observed problems can both be
very difficult.

For traditional networks, NeST [32] was proposed as a mecha-
nism for instrumenting the network stack toward diagnosis. NeST
uses a dependency graph to find stalled components. However, the
virtualized network is more complex than the traditional network.
Not only does it have more components, but also its components
are much more heterogeneous (i.e., blocking/nonblocking middle-
boxes). Simple dependency analysis also does not suffice for some
key performance problems (e.g., it does not aid in bottleneck mid-
dlebox detection).

There are some other works in the general distributed systems
world that try to correlate symptoms of performance problems and
their root causes. Some of them use end-to-end information to infer
the internal components’ states (i.e., Sherlock, netMedic, netDiag-
noser [11, 22, 16, 18]). Unfortunately, these techniques are not as
accurate as our direct instrumentation-based approach.

Some of the aforementioned prior systems (SCORE, MaxCover-
age, shrink and codebook [28, 29, 21, 26]) are based on bipartite
graph models (with symptoms on one side and possible causes on
the other, and weight assignment used to determine the most likely
root causes of problems observed). However, such models can-
not be used when the problem propagates or in situations where

components interfere with each other, both of which can arise very
frequently in the context of software data planes.

On the whole, we believe that PerfSight is a novel, first-of-a-kind
and important contribution to the space of diagnosis frameworks.
Its particular focus on software data planes makes it invaluable for
future network function virtualization set ups.

9. CONCLUSION
With the advent of NFV, data planes are becoming increasingly

complex, involving a variety of software packet processing ele-
ments. In this paper, we argued that these new “software data
planes” are susceptible to subtle performance problems that don’t
occur (or are infrequent) in traditional hardware-based data planes.
We argued that diagnosing these problems is difficult because no
existing tool or system provides the right level of information to
tease apart various potential causes of the observed degradation. To
this end, we present a system, PerfSight, a ground-up approach for
extracting comprehensive low-level information regarding packet
processing performance of the various elements in the data plane
and for conducting rich analysis on the information gathered. Through
careful experiments, we show that our framework can result in ac-
curate detection of the root causes of performance problems in soft-
ware data planes, and it imposes very little overhead.
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