

Virtualized and Self-configurable Utility Communications

Enabled by Software-Defined Networks

Young-Jin Kim

Bell-Labs, Alcatel-Lucent

young.jin_kim@alcatel-

lucent.com

Keqiang He

University of Wisconsin

keqhe@cs.wisc.edu

Marina Thottan

Bell-Labs, Alcatel-Lucent

marina.thottan@alcatel-

lucent.com

Jayant G. Deshpande

Bell-Labs, Alcatel-Lucent

jayant.deshpande@alcatel-

lucent.com

Abstract — Utility communications are increasingly required to

support machine-to-machine (M2M) communications for hundreds

to millions of end devices ranging from meters and PMUs to tiny

sensors, high-powered sensors (e.g., intelligent electric devices), and

electric vehicles. The Software Defined Network (SDN) concept

provides inherent features to support in a self-configurable and

scalable manner the deployment and management of existing and

envisioned utility communication networks that will connect

between end devices and application servers, or among end devices.

 The programmability of SDN technology allows the agile, elastic,

and scalable deployment of present and future utility applications

with varying requirements on security and time criticality. In this

work, we first show that a well-known standard solution (i.e., IEEE

802.1Q [1]), which is popularly employed for virtual networking in

industry, is limited to support large-scale utility M2M applications.

Next, with some utility application use cases, we demonstrate that

using the SDN technology (i.e., OpenFlow [2]), we enable elastically

adaptable virtual utility network slices per-application to securely,

dynamically, and cost-efficiently meet the utility communication

needs. Specifically, we design a SDN-based architectural solution

for virtual utility networks that will support self-configurable,

secure, and scalable deployment of utility applications that leverage

many end devices. Using two SDN-enabled Ethernet switches [3]

available in today’s market, the feasibility of our idea is discussed.

I. INTRODUCTION

 With Smart Grid roll-out, M2M communication networks

supporting electric utility applications traffic is undergoing a

tremendous change both in the increasing number of new utility

(or grid)
1

 applications, and a massive number of communication

endpoints that the network must support [4]. Most of this

increase in endpoints comes from deployment of sensors,

currently limited to a few hundred Remote Terminal Units

(RTUs), to hundreds to several million sensors including meters,

Phasor Measurement Units (PMUs), Intelligent Electronic

Devices (IEDs), and sensors attached to Electric Vehicles (EVs)

and Distributed Energy Sources (DERs). Not only a massive

number of sensors are being deployed, but also the combination

of the number of sensors and their respective frequency of

reporting the measurement data and status update will result in

increased network traffic, as shown in Fig. 1. In addition, due to

the scale, the grid applications require self-configurable and

scalable communication networks that can elastically meet the

needs for availability, security, and performance.

 In this work, we show that the SDN technology [2] can be

used as a key solution that addresses the above requirements for

the fast deployment of grid applications (hereafter, called utility

M2M applications), as shown in Fig.2. Specifically, we design a

SDN-based architectural solution for virtual utility networks,

SVUN, which will support in a self-configurable, secure, and

1

 We refer to grid and utility inter-changeably throughout this paper.

scalable manner the deployment of a broad spectrum of utility

M2M applications in practice. Our proposed SVUN idea, which

uses commoditized SDN switches as network elements, not only

has an ability to in a self-configurable manner define virtual

network slices with each slice that supports application (in one

utility or across more than one multiple utilities), or a group of

similar applications, but also will provide secure and cost-

efficient communications for utility M2M applications. Further,

while this paper is mostly dedicated to a SDN-based network

solution for utility M2M applications, our proposed idea can be

extended to a more general solution that supports other M2M

applications beyond Smart Grid context.

 The paper outline is as follows: In Section II, we describe

challenges of today’s virtual communication technology that is

popularly used in industry. Overall benefits of using SDN for

utility M2M applications are discussed in Section III. In Section

IV, our proposed idea SVUN is in a detail presented. In Section

V, we discuss the feasibility study performed over a small-but-

real SDN test-bed which consists of SDN-enabled switches and

Linux PCs. Conclusions are shown in Section VI.

SDN Switch Network

Devices as

Subscribers

Devices as

Publishers

SDN controller

Cloud of Computing Nodes

M2M Group

Manger

DER

Monitor

EV Charging

Controller

join joindata
data

Figure 1 Smart Grid M2M Applications: Sensors, Application

Servers and Communication frequency.

Figure 2 An Instance of SDN-enable Utility Comm. Networks.

Smart Meters

Thousands

to

several million

IEDs/RTUs

(Substations and

Distributed Automation)

Hundreds

to

several 10’s of thousands

PMUs

Several hundred

to

several thousand
Distributed Generation

Distributed Storage

EVs and EV Charging Stations

(Each with several IEDs)

Applications: TMS, DMS, MDMS, SCADA, DA, DR, Other

(Hundreds of applications)

Communication Network

Each meter

Every 15 minutes

Each IED/RTU

Every 2-30 sec

Each PMU

60 times/sec
Each IED

Every 5-30 sec

Utility

Data and Control

Center

2014 IEEE International Conference on Smart Grid Communications

978-1-4799-4934-2/14/$31.00 ©2014 IEEE 416

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

II. TODAY’S VIRTUAL COMMUNICATION NETWORKS

 M2M communication pattern is at the heart of the utility

applications. The communication pattern observed in most of

the utility applications (including the ones described in Section I)

is indeed M2M with little or no human intervention. We can

consider the industry standard (i.e., IEEE 802.1Q Virtual LAN

[1]) for virtual networking as a M2M communication solution

that can accommodate the grid applications described already in

Section I. Specifically, we can imagine Virtual Utility Networks

(VUNs) that are deployed in diverse granularity: per-utility, per-

application in a utility, per-organization in a utility, and per-

application across multiple applications. However, we find out

that the use of such virtual network technology incurs some

limitations, as will be describe next.

Operation Complexity: When communication-enabled devices

such as AMI meters, PMUs, IEDs, EVs, DERs, and so on are

plugged-in into utility communication networks and need to be

configured, it is highly desirable that the configuration of

connectivity, security policy, Quality of Service (QoS) policy,

and so on is fully automated with no human intervention (i.e.,

self-configuration) for addressing cost-efficient and agile utility

communication network operations. Otherwise, due to the

scaling of the end devices and the heterogonous requirements of

grid applications, utilities will face the increased management

complexity along with the deployment of Smart Grid and as a

result have to fairly increase the operation cost. Further, the self-

configuration requirement necessities for fast restoration from

failures caused by malfunctions or cyber attacks. However, we

question whether conventional networking solutions including

IEEE 802.1Q can address the self-configuration requirement for

the utility communications described above since they provide,

to the best of knowledge, manual configuration methods.

Scaling Issue: We have so far described challenges on aspects

of network or system operations. We now discuss scaling issues

when utility M2M communications are built over a conventional

VLAN technology, i.e., IEEE 802.1Q.

 Consider the following deployment scenario of a million scale

communication-enabled measurement and monitoring end

devices; a relatively-small number (e.g., 100~1000) of network

switches; thus, a physical port (called port) in a switch must be

logically (not physically) connected to more than one end device

(i.e., multiple meters per port via a data concentrator); also, an

end device must subscribe to more than one VLAN since it can

communicate with multiple different application servers, e.g.,

data measured from a residential meter is concurrently sent to

multiple different machines in a utility control center such as

load prediction servers and billing servers. Unfortunately, the

VLAN standard, IEEE 802.1Q, cannot scalably support the

scenario due to the small number of VLANs per-port (Port-

based VLANs or Protocol-based VLANs). In the port-based

VLAN, an access port between a switch and access devices (not

a trunk port between switches) are assigned to a VLAN during a

certain time period. In the protocol-based VLAN, one VLAN

per protocol is supported. As a result, an access port must be

concurrently used by multiple VLANs and only a small number

of well-known protocols (i.e., IP, ARP, and IPX) are supported.

Security Perspective: In a VUN built with the IEEE 802.1Q, a

member that are once authenticated can communicate with all

authenticated members in bi-directional directions.

Unfortunately, we cannot prevent end M2M devices from being

compromised due to the property of M2M communication [5].

Thus, compromising even an end M2M device can result in the

propagation of security threats across the VUN because of the

limitations of IEEE 802.1X [6] that IEEE 802.1Q uses as a

default authentication measure. Additionally, IEEE 802.1X does

not supports fine-grained (application-level) granularity but only

port-level granularity.

III. BENEFITS OF SDN FOR UTILITY M2M COMMUNICATIONS

 All SDNs can provide isolation of different traffic types,

applications, and/or endpoint classification, e.g., virtual network

slices may be defined for AMI, SCADA, DG/DS/EV, and PMU

traffic. Virtual network slices may also be based on geographical

or domain considerations (transmission and distribution or

security zones). The virtual network slices inherently enhance

security with traffic isolation and enabling security, QoS, and

even network management policies for each network slice. Thus,

a closed group of applications/application type/endpoint group

can have its “own virtual network” that is its network slice. Note

that the ability to rapidly create required functions with few

changes in the physical network makes the utility network less

vulnerable to potential network failures.

 Our SDN-based design offers a programmable open interface

to the applications as well as to the network elements for their

control, configuration, and management. There is a deliberate

shift from fixed network functions serving many applications to

per application virtualized functions making introduction of new

applications as well as connecting new endpoints in the network

more efficient and manageable. The ability to reconfigure a

software defined network and rapidly deploy virtualized

network functions allows for greater network utilization, global

resource optimization, and enhanced scaling. Thus, demand

driven service and device activation and provisioning will

directly lead to dynamic application velocity and scale.

The traffic isolation function of SDNs can be also useful to

service providers such as Verizon who provide communication

services for multiple different utilities (i.e., multi-tenancy). A

service provider can then create one or more network slices to

support a utility’s needs for (groups of) applications over these

virtual network slices. All advantages of rapid creation of

virtualized network functions can still be available to the service

provider and even to the utility.

IV. OUR PROPOSAL: SDN-ENABLED VIRTUAL UTILITY NETWORK

A. Background and Assumptions

 To support large-scale M2M communications, our design has

been inspired by the SDN concept (majorly described in this

paper) and the publisher-subscribe (Pub-Sub) communication

paradigm [7]. A utility application such as smart metering that

consists of homogenous measurement devices as publishers and

utility head-ends as subscribers in a utility control center can be

represented as a Pub-Sub group. For the past two decades, the

Pub-Sub paradigm has been popularly applied to commercial

2014 IEEE International Conference on Smart Grid Communications

417

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

message-oriented middleware and Internet web applications. Its

distinguishing property is that each member in a Pub-Sub group

does not require specific knowledge (i.e., IP address) about other

members in the group, i.e., the space/time decoupling property.

In addition, information multicast/aggregation capabilities are

inherently provided by the Pub-Sub system, as shown in Fig. 3.

Due to the space/time decoupling property and the inherent

multicast ability, the Pub-Sub paradigm has resilience against

cyber-attacks and internal system failures and in turn avoids

single points of failure and bottlenecks. In addition, it can

support communication flows for a massive number of end

devices in a scalable fashion. Thus, the Pub-Sub paradigm can

be considered as a base block for utility M2M applications.

 However, the Pub-Sub paradigm is implemented, to the best

of our knowledge, only on overlay networks with none or very

limited interfaces with physical switches and equipments. This

is because most current physical switches are limited to support

the pub-sub paradigm described above. Consequently, current

industry Pub-Sub communication solutions cannot be used for

utility M2M applications that require a broad spectrum of QoS

requirements such as delay. Note that some clean-slate research

such as Publish-Subscribe Internet Routing Paradigm PSIRP [8]

is focused on designing physical switches/nodes that inherently

provides the Pub-Sub capabilities. However, this approach is far

from practical due to interoperability issues.

 Before proceeding with the detailed discussion, the context

for the physical connectivity between M2M devices/machines

and SDN switches must be understood. One class of machines

such as RTUs, PMUs, or utility-side application servers are

directly connected to SDN enabled switches. However, the other

class of machines such as meters, DER sensors, and EV chargers

are indirectly connected to SDN switches due to the small

volume of data traffic generated and received by these machines.

Typically, these machines communicate with SDN switches

with low-bandwidth and high-delay access technologies such

PLCs (Power Line Communications) or unlicensed radios. Thus,

for the class of machines typically found in a distribution

network of the power grid, wired/wireless access-points (i.e.,

customer edge nodes) are used to directly connect them with an

SDN switch. However as the data carried on these networks are

expected to be part of the critical data for maintenance of the

grid (as in the case of demand response), it is important that end-

to-end data security should be ensured irrespective of physical

connectivity. As a result, access points as middle-boxes are not

allowed to manipulate data from end M2M devices.

B. Overview of SVUN

 Fig. 4 represents the overall idea of the SVUN that consists of

M2M clients (as publishers or subscribers), M2M control nodes,

and a set of SDN switches (i.e., OpenFlow switches [3]).

 SVUN data plane has the following three key notions: (1)

Layer-4 flow match for switch access ports, (2) VLAN identifier

tagging/stripping [1] for switch trunk ports, and (3) Pub-Sub

communication groups.

 SVUN control plane consisting of M2M group manager,

M2M authenticator, SDN controller [9], and so on provides in a

dynamic and fine-grained manner membership management and

authentication measures for establishing secure and QoS-aware

utility M2M communications (i.e., VLAN per pub-sub group),

compared to alternatives such as IEEE 802.1X or VMPS [10]

that provides membership management and authentication

measure in a static and coarse-grained manner. Please refer to

our prior work [11] for the details of M2M control plane.

 We emphasize that our unique contribution against other SDN

work achieves the complete automation of connectivity/security

configuration by combining M2M group mangers with a SDN

controller. Compared to other Pub-Sub work, our approach has

the following distinct features: 1) line-speed packet processing

and forwarding, 2) per-group VLAN traffic isolation, 3) per-

group QoS management (i.e., delay-sensitive), and 4) traffic-

flow monitoring for load balancing and fail-over.

C. Details of SVUN

 SVUN by design addresses the scalability issue as messages

of multiple VLANs can be concurrently traversed over switch

access ports as well as switch trunk ports. Moreover, we prevent

the propagation of security threats that may be developed by an

attacker who compromises a member in a VLAN. As shown in

Fig. 4, the SDN enabled switch network can perform line-speed

message processing and forwarding because of Ternary Content

Addressable Memory (TCAM) lookup speed. As default, a Pub-

Sub group is represented as a VLAN graph spun across the

utility’s communication network. A vertex in the VLAN graph

is an SDN switch that has a VLAN flow entry in its flow table
2

.

Path Establishment

 The SVUN has two distinct path establishment processes.

(1) The path establishment for M2M control flows: we note that

communications (i.e., control traffic such as join messages)

among M2M control nodes (specifically between M2M group

managers and SDN controllers) requires paths across a set of

SDN enabled switches. In the event of encountering a new M2M

control flow, the M2M control path can be reactively established

as OpenFlow SDN switches can inherently handle unmatched

2

 In physical SDN switches, a flow table is typically implemented in TCAM and

Static Random Access Memory–SRAM. The former is for checking packet

match and the latter for performing actions.

M2M Group Manager

M2M Publisher M2M Subscriber

9. Flow-based Match and Action

(Forward, VLAN Tagging, Multicast)

M2M Authenticator

Control-plane

interface

SDN Switch Network

Data-plane

interface

Flow Table

1. join

2

3

4

5 statistics

join

8. data

������������	
����
����

SDN

Controller

Control-plane

interface

Data-plane

interface

Network

Manager

10. data

M2M Data Traffic

M2M Control Traffic

6

7. accept accept

Figure 4 Schema of an Instance of Our SVUN.

�������	
��

�������	
�

�����
��	
��

�����
��	
��

�����
��	
�

��������	��	������������
��	
�

�������	
��

��������	��	��������������	
�

���
	����������������

�������	
���

���

Figure 3 Publish-Subscribe Communication Paradigm.

2014 IEEE International Conference on Smart Grid Communications

418

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

messages. Of course, it is possible to have proactive path set up

for the M2M control flow due to the small size of M2M control

nodes (i.e., in the order of tens). One advantage of the proactive

control paths is that the communication delay for the services

can be significantly reduced since we can avoid the non-

negligible delay
3

 of the reactive path setup.

(2) The path establishment for M2M data flows: establishing

communication paths for M2M data flows is always triggered in

a reactive manner by M2M control messages such as join

messages from M2M clients (as publishers or subscribers) over

a control path that has already been established. As described at

the beginning of this section, M2M application groups are being

configured per pub-sub group, and so a data plane path is

formed as a unidirectional network graph that consists of SDN

enabled switches and communication links. For an application

group T and its network graph G, graph G is updated (i.e.,

addition, modification of flow entries) whenever a M2M client

joins or leaves group T.

 For the establishment of data plane flow paths, a “packet-in”

message [2] is never triggered in our SDN switches. This results

in a significant reduction of the SDN control traffic load caused

by the SDN flow establishment. This is an important distinction

against the conventional SDN notion.

Scalability

 The SVUN is highly scalable with respect to flow entries used

for SDN switching. The memory (i.e., TCAM and SRAM) of

SDN switches where flow entries are kept is a major network

resource as most OpenFlow SDN switches available in today’s

market have small-size flow tables (i.e., less than 4K flow

entries). The scale of flows for M2M control traffic in a SVUN

is independent of the number of application groups and group

participants. It only depends on the number of M2M control

nodes required to set up the service and the number of SDN

switches that are associated with M2M group managers. A small

number (e.g., in the order of tens) of M2M control nodes is

sufficient to support utility M2M communications.

 The scale of flows for M2M data traffic in an SVUN is

dependent on the number K of application groups and the

number M of group participants. However, the scaling impact of

the number of group participants is bounded by the number of

SDN switches N due to the effect of VLAN aggregation and

multicast in SDN switches (see Fig. 5 and 6). Since an

application group is represented as a VLAN, the SDN switch

has only one VLAN flow entry in its flow table. That is, the

maximum number of flow entries per SDN switch is O(K) and K

is independent of N and also typically smaller than M. This

scaling is a unique characteristic of the SVUN.

 For a utility and its application group, the SVUN can optimize

the number of hops (or end-to-end delay) for the application

group using network resources already allocated to the utility,

since the application group’s VLAN graph is recomputed

whenever a participant joins or leaves the group. As a

3

It is typically less than 100ms; however, more than 1 second under heavy

reactive setup requests, according to our measurement performed over physical

OpenFlow SDN switches [3]. We notice that processing OpenFlow “packet-in”

messages creates a non-negligible work load in SDN switches and would be a

significant factor in rule setup delay.

consequence, the increase of end-to-end delay with growth in

the number of group participants can be avoided.

Automatic Network Virtualization

 We demonstrate utility network virtualization scenarios using

four example utility M2M applications: metering-based demand

prediction; PMU measurement based real-time state estimation;

DERs real-time monitoring; Plug-in EV charging control. Fig. 5

shows a virtualization scenario within a utility. Fig. 6 shows a

network virtualization scenario across multiple utilities.

 The virtualization within a utility is available by M2M group

management alone (see Figure 4). As illustrated in Figure 5, a

utility operates PMU measurement data based real-time state

estimation group G1 and metering data based demand prediction

group G2 over a subset of SDN enabled switches that have been

given to the utility. In the presence of failure of SDN enabled

switches or utility servers, we can perform fail-over using the

remaining switches or backup utility servers. The number of

flow entries that each SDN switch holds is bounded by the

number of VLANs (i.e., the number of application groups), as

already described. In group G1, there are a number of PMU

devices and two utility-side servers: 1) computation server S that

performs grid state estimation in real-time and 2) storage server

H that persistently keeps all data generated by the utility. Group

G1 is represented as a VLAN (G1) graph across the given subset

of SDN enabled switches. As shown, switches E3 and E4 have

to support VLAN multicast feature; otherwise, the number of

flow entries in the switches must increase to two. In group G2,

there are a massive number of AMI meters and two utility-side

servers: 1) computation server L that performs demand load

prediction and 2) storage server H. Group G2 is represented as

VLAN (G2) graph across the given subset of SDN enabled

switches. The major difference between these two application

groups is end-to-end delay handling. In VLAN (G1), the

stringent delay requirement of real-time state estimations must

�������	��

��	�
��� �����	
����

����

���������

��	�
��

�
����
����	

��

���	

�����

�	�	����	���	

���

��������

���������

���������

�������	��

�����	
�����	�
���

�������	��

������	
��

������	
���

������	�������	���	�
����

���� ���������	���	�
����

Figure 5 Intra-virtualization Scenario, a utility operates different

applications such as a PMU group G1 and a metering group G2.

�������	��

��	�
��� �����	
��

���

���������

�������	��

��	�
���

����	
��

��	�

������������

�����������
��������

���������

���������

�������	��

�����	
���
�� ������	���	�
�����

���������

��	�
���

������	
���

������	
���

	
����
���
��������������� 	
����
���
���������������

�����

Figure 6 Third Party -Virtualization Scenario, one utility with EV

charging group G1 and the other utility with DER group G2.

2014 IEEE International Conference on Smart Grid Communications

419

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

be met. In VLAN (G2), the delays are not critical but the graph

size needs to be minimized due to the massive number of AMI

meters that can unnecessarily consume expensive memory

resources on the given subset of SDN enabled switches.

 Virtualization across multiple utilities is also possible by

appropriate network resource and group management (see

Figure 6). As shown in Figure 6, two utilities can virtually

operate an EV charging scheduler group G1 and DER

monitoring group G2 respectively over their respective subset of

SDN enabled switches (four for utility 1 and three for utility 2).

The number of flow entries that each edge SDN switch holds is

bounded by the total number of VLANs across utilities. We

remark that SVUN allocates one VLAN per application. Some

VLANs for applications such as AMI metering are under single

utility and by contrast other VLANs for applications such as

synchophasor measurements, plug-in EV charging are

established across multiple utilities. Thus, the number of flow

entries that each edge SDN switch holds is dependent of the

number of applications rather than the number of utilities, In fact,

a portion of the flow table per SDN switch can be statically or

dynamically sliced for each utility. Compared with G2, G1

needs mobility support since a plug-in EV can communicate

with different edge SDN switches over time due to its nomadic

plug-in behavior. The SDN flow management for mobile

application groups must be efficient on aspects of memory

utilization without violating delay requirements. Fortunately,

since today’s EV battery charging speed is slow, the end-to-end

delay requirement for plug-in EV charging application is not too

stringent. This implies that communication paths for EV

charging can be established reactively since edge SDN switches

can inherently handle unmatched messages.

V. FEASIBILITY STUDY

 In this section, we discuss a real implementation of SVUN

written in Python and C++ and tested in our Lab test bed.

A. Implementation

 In our prior work [11] without using the SDN concept, we

have already implemented all M2M control components (except

a SDN controller) using C++. In the prior work, for a pub-sub

group, a M2M group manager (as a message broker) is chosen

by using an overlay technology [12], and forwards both M2M

control traffic and M2M data traffic. However, the prior work is

limited to meet stringent delay requirements since the message

broker’s data forwarding engine was built as a user-mode

software module. In this work, we have thus upgraded the prior

implementation to significantly improve the delay performance

of M2M data traffic. In this implementation of SUVN which the

SDN concept is applied to, a M2M group manager does not

handle M2M data traffic anymore; it requests a SDN controller

[9] of installing VLAN flow-rules and also let M2M publishers

know where publishing data is about to be sent; as a result, for a

M2M data traffic over a pub-sub group, it is forwarded by a set

of SDN switches in a data-path established for the group.

B. SUVN Lab Test-bed

 For our SUVN Lab test-bed, two Intel SDN switches [3]

(supporting OpenFlow ver. 1.0.0) and five PCs have been used,

as shown in Fig 7. A PC plays as a M2M group manager, a SDN

controller, a 100-meters emulator (as publishers), a 100-PMUs

emulator (as publishers), or a data collector (as subscribers). As

we focus on data-plane communication delay other than control-

plane communication delay, the M2M authenticator is omitted.

 We have two testing scenarios: 1) a meter joins a meter data

collection group in a serial fashion (every two second interval),

2) a pair of a meter and a PMU joins a meter data collection

group and a PMU data collector in a serial fashion respectively.

Under the testing scenarios, we measured three metrics: 1) flow-

table occupancy per switch, 2) end-to-end delay of M2M data

plane and 3) M2M control plane. The flow-table occupancy

shows scalability of our SVUN since the TCAM is critical but

has limited resources; the end-to-end delay of M2M data plane

is the time difference between when an M2M publisher sends

data and when an M2M subscriber receives the data. This metric

corresponds to the forwarding performance of SDN switches in

M2M data traffic. The end-to-end delay of M2M control plane is

the time difference between when a M2M client (as either a

M2M publisher or a M2M subscriber) sends a join message to

its M2M group manager and when it receive an accept message

from its M2M group manager.

C. Measurement Results

Flow Table Occupancy: the maximum number of hard-state

flow rules for M2M data traffic is only two irrespective of the

number of M2M devices. There exist a small number of soft-

state flow rules (deleted after a timer is expired) for connectivity

between devices and an M2M group manager.

SDN controller

(i.e., Pox)

10G

ALU Enterprise switch

Intel SDN Switches

M2M Group

Manager

Data

Collector

10G

10G

10G

10G

Meter

emulator

PMU

emulator

1G

1G

1G

Figure 7 Our Lab test-bed with two SDN switches.

Figure 8 A picture of SDN switches in our Lab test-bed.

2014 IEEE International Conference on Smart Grid Communications

420

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

Delay on aspects of M2M data plane: In principle, once

VLAN flow rules for M2M data-plane have been installed, we

see line-speed packet lookup and forwarding of TCAM. In the

implementation of SVUN, we observed that the end-to-end

delay from publishers to subscribers is never more than 150 ns

irrespective of the size of data.

Delay on aspects of M2M control plane: M2M control traffic

delay is either about 30ms or about 90ms. Compared with M2M

data traffic delay, it is fairly high, even though it is tolerable. We

observed the following delay sources: 1) flooding-based ARP

discovery, 2) TCP connection setup between M2M clients and

M2M group manager, 3) A VLAN flow setup for data-plane.

VI. CONCLUSION

 In this paper, we show that conventional virtual networking

technologies including IEEE 802.1Q is limited to support large-

scale utility M2M applications such as demand response based

on AMI metering, real-time estate estimation based in PMU

measurements, or grid-operation aware EV charging. Motivated

by the limitation, we propose new SDN-based architectural

solution for virtual utility networks (SVUN) that will support

self-configurable, secure, and scalable deployment of utility

M2M applications. Through measurements performed over a

small-but-real Lab test-bed, we confirm the feasibility of the

SVUN. Further, we note that the proposed SVUN with small

modifications can be extended to a more general solution that

supports other M2M applications beyond Smart Grid context.

REFERENCES

[1] IEEE Std. 802.1Q-2011, Media Access Control (MAC) Bridges and

Virtual Bridged Local Area Networks.

[2] OpenFlow Switch Specification Version 1.0.0, Dec. 2013.

[3] R. Ozdag, Intel® Ethernet Switch FM6000 Series, Intel white paper,

2012.http://www.intel.com/content/dam/www/public/us/en/documents/whit

e-papers/ethernet-switch-fm6000-sdn-paper.pdf.

[4] Budka, K., Deshpande J., and Thottan, M, Communication Networks for

Smart Grids – Making Smart Grid Real, Springer, 2014.

[5] Y.-J. Kim, V. Kolesnikov, and M. Thottan, TSAF: Tamper-resistant and

scalable mutual authentication framework for plug-in EV charging, IEEE

SmartGridComm, Oct. 2013.

[6] B. Aboba, D. Simon, and P. Eronen, Extensible Authentication Protocol

(EAP) Key Management Framework, IETF 5247, Aug. 2008.

[7] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, The Many Faces

of Publish/Subscribe, ACM Computing Surveys, vol. 35, no. 2, June 2003.

[8] P. Jokela, A. Zahemszky, C. E. Rothenberg, S.a Arianfar, P. Nikander,

LIPSIN: line speed publish/subscribe inter-networking, ACM SIGCOMM

Conference on Data communication, Aug. 2009.

[9] POX Controller, https://openflow.stanford.edu/display/ONL/POX+Wiki.

[10] OpenVLAN Member Policy Server, http://sourceforge.net/projects

/vmps.

[11] Y-J. Kim, J. Lee, G. Atkinson, H. Kim and M. Thottan, SeDAX: A

secure, resilient and scalable platform, IEEE JSAC, vol. 30, no. 6, July 2012.

[12] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.

Shenker, “GHT: A geographic hash table for data-centric storage,” in Proc.

ACM WSNA Workshop, Sep. 2002.

[13] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, Fabric: A

Retrospective on Evolving SDN, ACM HotSDN Workshop, Aug. 2012.

[14] E. Rosen, A. Viswanathan, and R. Calton, Multiprotocol Label

Switching Architecture, RFC 3031, IETF 2001.

APPENDIX: An SDN Solution with MPLS

 We have so far considered virtual utility networking on SDN

edge switches that are connected to M2M clients. In this section,

we discuss how our SDN solution can be integrated with non-

edge switches that provide connectivity among edge switches.

 Advantages of using Multi-Protocol Label Service (MPLS)-

based SDN design are discussed in [13]. MPLS provides natural

tools for virtual network slicing – which is necessary for

implementing a network architecture for M2M communication.

The SDN edges switches can be implemented using Label-Edge

Routers (LER), whereas the non-edge switches in the network

are implemented using Label-Switched Routers (LSR) Of MPLS

Architecture [14]. So, the host-network interface is completely

independent of the packet–network interface between a packet

and the LSR [13]. The SDN controller will need to configure the

required Label switched paths between the LERs going through

the core network made entirely of the LSRs or the non-edge

switches.

 The edge switches (LERs) are responsible for mapping the

destination addresses into the “labels” configured by the SDN

controller. The non-edge switches (LSRs) only need to look at

the labels and forward the packet to the next switch on the LSP,

swapping out the label as configured by the SDN controller

while configuring the LSP. Consider an LSP configured from an

LER to another LER, as shown in Fig. 9. The labels are

configured by the SDN controller in the switches. The ingress

LER, adds Label b1 to the incoming packet from, say, a

publisher connected to it. LSR A after receiving the packet looks

into its label table and decided to forward the packet to LSR B

with label b1 swapped with label b2. And so on. Finally, the

egress LER removes the label and forwards the packet to the

subscriber.

 Note that in an actual MPLS network, the LSPs are created by

the LERs and LSRs using one of the several MPLS control

plane protocols such as Label Distribution Protocol (LDP) or

Resource Reservation – Traffic Engineering (RSVP-TE). In the

SDN environment, LSPs should be configured by the SDN

controller as needed.

 As discussed in [13], the main advantage of using MPLS-like

SDN deployment is that, the core network of LSRs is very

simple and does not even have to know the protocols used by the

hosts between them or between a host and an edge switch. On

the other hand, the LERs can be complex and need not know the

actual networking implementation of the core as long as

destination addresses and mapped to the labels. In principle, the

LERs and the core networks can be independently designed,

implemented, and/or upgraded.

 The virtual network slices implements by SDN will be

equivalent to well understood L1, L2, and L3 MPLS services

(also known as MPLS VPNs) emulating the respective protocols.

All advantages of traffic isolation, per service QoS, and

reliability properties of the MPLS services are instantly

available to the SDN network

Figure 9 LER, LSR, Labels, and Label Switched Path.

A B

b3b2b1
LER LSR LERLSR

Publisher Subscriber

2014 IEEE International Conference on Smart Grid Communications

421

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 28,2021 at 13:03:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

